B.Sc. $5^{\text {th }}$ Semester Assignment Department of Mathematics, Mugberia Gangadhar Mahavidyalaya

(Group Theory-1)

Paper -C6T

1. In a commutative group $\left(\mathrm{G},{ }^{*}\right)$, Prove that $(a * b)^{-1}=a^{-1} * b^{-1}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in G .
2. Let $\left(\mathrm{G},{ }^{*}\right)$ be an abelian Group and $\mathrm{H}=\left\{a^{2}: a \in G\right\}$. Prove that H is a subgroup of G .
3. Show that the $\operatorname{Set} S=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right): x \in \mathbb{R}\right\}$ is a subgroup of the group of all second order non singular real Matrices.
4. Prove that the set $\mathbb{Q}-\{1\}$ where \mathbb{Q} is the set of all rational number forms a abelian group under the composition * defind by $a * b=a+b-a b$
5. Prove that a group G is abelian if $b^{-1} a^{-1} b a=e$ for all a, b in G .
6. Show that the group S_{3} is non abelian
7. Show that the group $\mathrm{G}=\left\{1, \omega, \omega^{2}\right\}$ is cyclic .
8. Let ($\mathrm{G},^{*}$) be an infinite cyclic group generated by a , Prove that a and a^{-1} are only generators of the group.
9. Prove that the set of all integers which are multiple of 5 is a subgroup of $(Z,+)$.
10. If G be an abelian group, then prove that $(a * b)^{n}=a^{n} * b^{n}$ For all integers n .
11. The centre Z of g is define by $Z(G)=\{z \in G: z x=x z$ for all $x \in G\}$. Prove that $Z(G)$ is a normal subgroup of G.
12. If G be a group in which $(a b)^{3}=a^{3} b^{3}$ for all a, b in G . Prove that $\mathrm{H}=\left\{x^{3}: x \in G\right\}$ is a normal subgroup of G.
13. If G be a group and H is a subgroup of index 2 in G, Prove that H is a normal subgroup.
14. Prove that every proper subgroup of the symmetric group S_{3} is cyclic.
15. Show that the Commutative subgroup of any group is a normal subgroup.
16. Let H and K be two subgroups of ($G,^{*}$) then $H K$ is a subgroup of G iff $H K=K H$.
17. A subgroup H of a group G is normal iff $x \mathrm{Hx}^{-1}=\mathrm{H}$ for all $x \in G$.
18. Prove that the set of Matrices of the form $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is a abelian group under matrix multiplication, where θ is real.
19. Give an example to show that if His normal subgroup of G and K is normal subgroup of H then k may not be a normal subgroup of G .
20. Show that every subgroup of a cyclic group is normal.
21. Prove that the ring $s=\{a+b \sqrt{5}: a, b$ aer integers $\}$ is a commutative group with respect to addition.
22. Show that the set $\mathrm{s}=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right)\right.$: x are real and $\left.x \neq 0\right\}$ forms a normal subgroup of $\mathrm{GL}(2, \mathrm{R})$, the group of all real non singular 2×2 matrices.
23. Show that every subgroup of a abelian group is normal.
24. Show that the set $\mathrm{s}=\left\{\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right): x, y\right.$ are real and $\left.x, y \neq 0\right\}$ is a group under matrix multiplication.
25. Prove that residue class modulo $6, z_{6}$ is is a commutative group with respect to addition.
26. Show that the set $\mathrm{S}=\left\{\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right): x\right.$, y are real and $\left.x \neq 0\right\}$ is a commutative group under matrix multiplication.
27. Give an example to show that union of two subgroup may not be a subgroup.
28. Prove that the set of all integers of the form $2 n$ where n is any integer is a commutative group with respect to addition.
29. .Using Lagrange's theorem prove that every group of prime order is cyclic.
30. Any two right or left cosets of a subgroup are either disjoint or identical.
31. Prove that every quotient group of a cyclic group is cyclic.
32. Show that two right cosets Ha, Hb are distinct iff the two left cosets $a^{-1} H, b^{-1} H$ are distinct.
33. Let Z be the centre of a group. If G / H is cyclic, prove that G is abelian.
34. If G is a group and H is a subgroup of index 2 in G , prove that H is a normal subgroup.
