B.Sc. 5th Semester Assignment

Department of Mathematics, Mugberia Gangadhar Mahavidyalaya

(Group Theory-1)

Paper -C6T

- 1. In a commutative group (G,*), Prove that $(a * b)^{-1} = a^{-1} * b^{-1}$ for all a, b in G.
- 2. Let (G,*) be an abelian Group and H = $\{a^2 : a \in G\}$. Prove that H is a subgroup of G.
- 3. Show that the Set $S = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \}$ is a subgroup of the group of all second order non singular real Matrices.
- 4. Prove that the set $\mathbb{Q} \{1\}$ where \mathbb{Q} is the set of all rational number forms a abelian group under the composition * defind by a * b = a + b ab
- 5. Prove that a group G is abelian if $b^{-1}a^{-1}ba = e$ for all a, b in G.
- 6. Show that the group S_3 is non abelian
- 7. Show that the group $G=\{1, \omega, \omega^2\}$ is cyclic.
- 8. Let (G,*) be an infinite cyclic group generated by a , Prove that a and a^{-1} are only generators of the group .
- 9. Prove that the set of all integers which are multiple of 5 is a subgroup of (Z,+).
- 10. If G be an abelian group , then prove that $(a * b)^n = a^n * b^n$ For all integers n.
- 11. The centre Z of g is define by $Z(G)=\{z \in G : zx=xz \text{ for all } x \in G \}$. Prove that Z(G) is a normal subgroup of G.
- 12. If G be a group in which $(ab)^3 = a^3b^3$ for all a, b in G. Prove that H ={ $x^3: x \in G$ } is a normal subgroup of G.
- 13. If G be a group and H is a subgroup of index 2 in G, Prove that H is a normal subgroup.
- 14. Prove that every proper subgroup of the symmetric group S_3 is cyclic.
- 15. Show that the Commutative subgroup of any group is a normal subgroup.

- 16. Let H and K be two subgroups of (G,*) then HK is a subgroup of G iff HK=KH.
- 17. A subgroup H of a group G is normal iff xHx^{-1} =H for all $x \in G$.
- 18. Prove that the set of Matrices of the form $\begin{pmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{pmatrix}$ is a abelian group under matrix multiplication, where θ is real.
- 19. Give an example to show that if His normal subgroup of G and K is normal subgroup of H then k may not be a normal subgroup of G.
- 20. Show that every subgroup of a cyclic group is normal.
- 21. Prove that the ring s={ $a + b\sqrt{5}$: *a*, *b* aer integers} is a commutative group with respect to addition.
- 22. Show that the set $s = \{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} : x \text{ are real and } x \neq 0 \}$ forms a normal subgroup of GL(2,R), the group of all real non singular 2×2 matrices.
- 23. Show that every subgroup of a abelian group is normal.
- 24. Show that the set $s = \{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \text{ are real and } x, y \neq 0 \}$ is a group under matrix multiplication.
- 25. Prove that residue class modulo 6_{z_6} is is a commutative group with respect to addition.
- 26. Show that the set $S = \{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} : x, y \text{ are real and } x \neq 0 \}$ is a commutative group under matrix multiplication.
- 27. Give an example to show that union of two subgroup may not be a subgroup.
- 28. Prove that the set of all integers of the form 2n where n is any integer is a commutative group with respect to addition.
- 29. .Using Lagrange's theorem prove that every group of prime order is cyclic.
- 30. Any two right or left cosets of a subgroup are either disjoint or identical.
- 31. Prove that every quotient group of a cyclic group is cyclic.
- 32. Show that two right cosets Ha,Hb are distinct iff the two left cosets $a^{-1}H$, $b^{-1}H$ are distinct.
- 33. Let Z be the centre of a group . If ${}^{G}/_{H}$ is cyclic, prove that G is abelian.
- 34. If G is a group and H is a subgroup of index 2 in G, prove that H is a normal subgroup.